大数据分析工具使用户能够分析各种各样的信息——包括结构化事务数据和社交媒体帖子、Web服务器日志文件及其他形式的非结构化和半结构化数据。一旦组织决定要购买一个大数据分析工具,下一步就是制定一个流程,评估可用的产品,然后从中找到一个最适合你需求和要求的产品。
下面我们将介绍在评估各种大数据分析工具符合企业需求的程度时可能用到的必备特性和特定属性。然后,你再编写一个预案请求(RFP),说明使用这些工具将如何解决组织的需求。
建模技术的广度与深度。供应商已经应用了不同级别的建模,并且相应地开发了不同复杂度的分析功能。单个工具支持的分析建模广度反应了所提供的不同方法。其中一些例子包括回归技术、根据过去趋势预测变化值的时间序列模型、分类与回归树(也称为CART)和神经网络。
建模技术的深度反映了所使用方法的两个方面特征:支持更精准开发模型的算法成熟度和建模技术的灵活性。换而言之,数据挖掘和预测分析时需要使用哪一种级别的专业知识才能理解目前能够开发哪一些类别的模型及如何使用一个特定工具完成建模?
经验一般的数据分析师感兴趣的是提供大量分析功能的供应商产品,而更专业的分析师和统计师则更偏好于那些能够更深入分析特定分析模型的工具。
集成与可访问性。大数据分析应用通常依赖于越来越多的内部和外部数据源,其中包括结构化和非结构化数据。这促成了支持数据可访问性和系统集成的功能需求。这个方面要考虑的特性有:
非结构化数据使用率。确认产品能够使用不同类型的非结构化数据(文档、电子邮件、图像、视频、演示文稿、社交媒体渠道信息等),并且能够解析和利用收到的信息。
大数据可访问性。对比供应商工具连接大数据架构的方式,其中包括存储在Hadoop的分布式数据,以及各种横向扩展存储中存储的文件(例如,MongoDB或Apache Cassandra等NoSQL数据)。
湘ICP备2022002427号-10 湘公网安备:43070202000427号
© 2013~2024 haote.com 好特网